Pular para o conteúdo principal
Devled - Empresa de desenvolvimento de software
  • Cases
  • Sobre
  • Carreiras
  • Blog
Devled Logo

Transformando ideias em soluções digitais inovadoras.

Serviços

  • Desenvolvimento Web
  • Inteligência Artificial
  • Cloud & DevOps
  • Desenvolvimento Mobile

Empresa

  • Sobre Nós
  • Cases
  • Carreiras
  • Blog

Contato

Rua Carlos Augusto Cornelsen, 203, Loja 1

Curitiba, PR 80520-560

[email protected]

+55 (19) 99865-3595

Legal

  • Política de Privacidade
  • Termos de Serviço
  • Dúvidas sobre LGPD?
SSL Seguro
Conexão criptografada
LGPD Compliant
Proteção de dados
99.9% Uptime
Alta disponibilidade

© 2025 Devled. Todos os direitos reservados.

CNPJ: 49.034.715/0001-54

Voltar ao Blog

Prompt Engineering Techniques

30 de outubro de 2025
Illustration of prompt engineering concepts

A qualidade das respostas de LLMs depende 80% do prompt. Domine as técnicas profissionais.

1. Chain of Thought (CoT)

Force o modelo a "pensar antes de responder":

Ruim:

```

Calcule: 234 × 567

Prompt Engineering Techniques

Prompt engineering is a crucial aspect of working with AI models. It involves crafting inputs that guide the model to produce desired outputs. This article explores various techniques and best practices.

Understanding the Basics

To effectively use prompt engineering, one must understand the model's capabilities and limitations. Here are some foundational concepts:

  • Clarity: Ensure your prompts are clear and unambiguous.
  • Specificity: Provide specific instructions to guide the model.

Advanced Techniques

Iterative Refinement

Iterative refinement involves adjusting prompts based on the model's responses. This technique helps in honing the output quality.

```python

Example of iterative refinement

prompt = "Translate the following text to French: 'Hello, world!'"

response = model.generate(prompt)